Last day, we saw that the function $f(x)=\ln x$ is one-to-one, with domain $(0, \infty)$ and range $(-\infty, \infty)$. We can conclude that $f(x)$ has an inverse function $f^{-1}(x)=\exp (x)$ which we call the natural exponential function. The definition of inverse functions gives us the following:

$$
\begin{aligned}
& y=f^{-1}(x) \text { if and only if } x=f(y) \\
& y=\exp (x) \text { if and only if } x=\ln (y)
\end{aligned}
$$

The cancellation laws give us:

$$
\begin{gathered}
f^{-1}(f(x))=x \quad \text { and } \quad f\left(f^{-1}(x)\right)=x \\
\exp (\ln x)=x \quad \text { and } \quad \ln (\exp (x))=x
\end{gathered}
$$

We can draw the graph of $y=\exp (x)$ by reflecting the graph of $y=\ln (x)$ in the line $y=x$.

We have that the graph $y=\exp (x)$ is one-to-one and continuous with domain $(-\infty, \infty)$ and range $(0, \infty)$. Note that $\exp (x)>0$ for all values of x. We see that

$$
\begin{array}{rcl}
\exp (0)=1 & \text { since } & \ln 1=0 \\
\exp (1)=e & \text { since } & \ln e=1 \\
\exp (2)=e^{2} & \text { since } & \ln \left(e^{2}\right)=2 \\
\exp (-7)=e^{-7} & \text { since } & \ln \left(e^{-7}\right)=-7
\end{array}
$$

In fact for any rational number r, we have

$$
\exp (r)=e^{r} \quad \text { since } \quad \ln \left(e^{r}\right)=r \ln e=r,
$$

by the laws of Logarithms.
When x is rational or irrational, we define e^{x} to be $\exp (x)$.

$$
e^{x}=\exp (x)
$$

Note: This agrees with definitions of e^{x} given elsewhere, since the definition is the same when x is a rational number and the exponential function is continuous.
Restating the above properties given above in light of this new interpretation of the exponential function, we get:
\square

$$
\begin{gathered}
e^{x}=y \text { if and only if } \ln y=x \\
e^{\ln x}=x \quad \text { and } \quad \ln e^{x}=x
\end{gathered}
$$

Solving Equations

We can use these formulas to solve equations.
Example Solve for x if $\ln (x+1)=5$

Example Solve for x if $e^{x-4}=10$

Limits

From the graph we see that

$$
\lim _{x \rightarrow-\infty} e^{x}=0, \quad \lim _{x \rightarrow \infty} e^{x}=\infty
$$

Example Find the limit $\lim _{x \rightarrow \infty} \frac{e^{x}}{10 e^{x}-1}$.

Rules of Exponents

The following rules of exponents follow from the rules of logarithms:

$$
e^{x+y}=e^{x} e^{y}, \quad e^{x-y}=\frac{e^{x}}{e^{y}}, \quad\left(e^{x}\right)^{y}=e^{x y}
$$

Proof We have $\ln \left(e^{x+y}\right)=x+y=\ln \left(e^{x}\right)+\ln \left(e^{y}\right)=\ln \left(e^{x} e^{y}\right)$. Therefore $e^{x+y}=e^{x} e^{y}$. The other rules can be proven similarly.

Example Simplify $\frac{e^{x^{2}} e^{2 x+1}}{\left(e^{x}\right)^{2}}$.

Derivatives

$$
\frac{d}{d x} e^{x}=e^{x}
$$

$$
\frac{d}{d x} e^{g(x)}=g^{\prime}(x) e^{g(x)}
$$

Proof We use logarithmic differentiation. If $y=e^{x}$, we have $\ln y=x$ and differentiating, we get $\frac{1}{y} \frac{d y}{d x}=1$ or $\frac{d y}{d x}=y=e^{x}$. The derivative on the right follows from the chain rule.

Example Find $\frac{d}{d x} \sin ^{2} x$ and $\frac{d}{d x} \sin ^{2}\left(e^{x^{2}}\right)$

Integrals

$$
\int e^{x} d x=e^{x}+C
$$

$$
\int g^{\prime}(x) e^{g(x)} d x=e^{g(x)}+C
$$

Example Find $\int x e^{x^{2}+1} d x$.

Old Exam Questions
Old Exam Question The function $f(x)=x^{3}+3 x+e^{2 x}$ is one-to-one. Compute $f\left({ }^{-1}\right)^{\prime}(1)$.

Old Exam Question Compute the limit

$$
\lim _{x \rightarrow \infty} \frac{e^{x}-e^{-x}}{e^{2 x}-e^{-2 x}}
$$

Old Exam Question Compute the Integral

$$
\int_{0}^{\ln 2} \frac{e^{x}}{1+e^{x}} d x
$$

Extra Examples (please attempt these before looking at the solutions)

Example Find the domain of the function $g(x)=\sqrt{50-e^{x}}$.

Example Solve for x if $\ln \left(\ln \left(x^{2}\right)\right)=10$

Example Let $f(x)=e^{4 x+3}$, Show that f is a one-to-one function and find the formula for $f^{-1}(x)$.

Example Evaluate the integral

$$
\int_{3 e^{2}}^{3 e^{4}} \frac{1}{x\left(\ln \frac{x}{3}\right)^{3}} d x
$$

Example Find the limit $\lim _{x \rightarrow-\infty} \frac{e^{x}}{10 e^{x}-1}$ and $\lim _{x \rightarrow 0} \frac{e^{x}}{10 e^{x}-1}$.

Example Find $\int_{0}^{\frac{\pi}{2}}(\cos x) e^{\sin x} d x$.

Example Find the first and second derivatives of $h(x)=\frac{e^{x}}{10 e^{x}-1}$. Sketch the graph of $h(x)$ with horizontal, and vertical asymptotes, showing where the function is increasing and decreasing and showing intervals of concavity and convexity.

Extra Examples: Solutions

Example Find the domain of the function $g(x)=\sqrt{50-e^{x}}$.
The domain of g is $\left\{x \mid 50-e^{x} \geq 0\right\}$.

$$
50-e^{x} \geq 0 \text { if and only if } 50 \geq e^{x}
$$

if and only if $\quad \ln 50 \geq \ln \left(e^{x}\right)=x$ or $x \leq \ln 50$
since $\ln (x)$ is an increasing function.
Example Solve for x if $\ln \left(\ln \left(x^{2}\right)\right)=10$
We apply the exponential function to both sides to get

$$
e^{\ln \left(\ln \left(x^{2}\right)\right)}=e^{10} \text { or } \ln \left(x^{2}\right)=e^{10} .
$$

Applying the exponential function to both sides again, we get

$$
e^{\ln \left(x^{2}\right)}=e^{e^{10}} \text { or } x^{2}=e^{e^{10}} .
$$

Taking the square root of both sides, we get

$$
x=\sqrt{e^{e^{10}}} .
$$

Example Let $f(x)=e^{4 x+3}$, Show that f is a one-to-one function and find the formula for $f^{-1}(x)$.
We have the domain of f is all real numbers. To find a formula for f^{-1}, we use the method given in lecture 1.

$$
y=e^{4 x+3} \text { is the same as } x=f^{-1}(y) .
$$

we solve for x in the equation on the left, first we apply the logarithm function to both sides

$$
\ln (y)=\ln \left(e^{4 x+3}\right)=4 x+3 \quad \rightarrow \quad 4 x=\ln (y)-3 \quad \rightarrow \quad x=\frac{\ln (y)-3}{4}=f^{-1}(y)
$$

Now we switch the x and y to get

$$
y=\frac{\ln (x)-3}{4}=f^{-1}(x) .
$$

Example Evaluate the integral

$$
\int_{3 e^{2}}^{3 e^{4}} \frac{1}{x\left(\ln \frac{x}{3}\right)^{3}} d x
$$

We try the substitution $u=\ln \frac{x}{3}$.

$$
\begin{gathered}
d u=\frac{3}{x} \cdot \frac{1}{3} d x=\frac{1}{x} d x, \quad u\left(3 e^{2}\right)=2, \quad u\left(3 e^{4}\right)=4 . \\
\int_{3 e^{2}}^{3 e^{4}} \frac{1}{x\left(\ln \frac{x}{3}\right)^{3}} d x=\int_{2}^{4} \frac{1}{u^{3}} d u=\left.\frac{u^{-2}}{-2}\right|_{2} ^{4}=\left.\frac{1}{-2 u^{2}}\right|_{2} ^{4}
\end{gathered}
$$

$$
=\frac{1}{(-2)(16)}-\frac{1}{(-2)(4)}=\frac{1}{8}-\frac{1}{32}=\frac{3}{32}
$$

Example Find the limit $\lim _{x \rightarrow-\infty} \frac{e^{x}}{10 e^{x}-1}$ and $\lim _{x \rightarrow 0} \frac{e^{x}}{10 e^{x}-1}$.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{e^{x}}{10 e^{x}-1} & =\frac{\lim _{x \rightarrow-\infty} e^{x}}{\lim _{x \rightarrow-\infty}\left(10 e^{x}\right)-1}=\frac{0}{0-1}=0 . \\
\lim _{x \rightarrow 0} \frac{e^{x}}{10 e^{x}-1} & =\frac{\lim _{x \rightarrow 0} e^{x}}{\lim _{x \rightarrow 0}\left(10 e^{x}\right)-1}=\frac{1}{10-1}=\frac{1}{9}
\end{aligned}
$$

Example Find $\int_{0}^{\frac{\pi}{2}}(\cos x) e^{\sin x} d x$.
We use substitution. Let $u=\sin x$, then $d u=\cos x d x, u(0)=0$ and $u(\pi / 2)=1$.

$$
\int_{0}^{\frac{\pi}{2}}(\cos x) e^{\sin x} d x=\int_{0}^{1} e^{u} d u=\left.e^{u}\right|_{0} ^{1}=e^{1}-e^{0}=e-1
$$

Example Find the first and second derivatives of $h(x)=\frac{e^{x}}{10 e^{x}-1}$. Sketch the graph of $h(x)$ with horizontal, and vertical asymptotes, showing where the function is increasing and decreasing and showing intervals of concavity and convexity.
y-int: $h(0)=\frac{1}{9}$
x-int: $h(x)=0$ if and only if $e^{x}=0$, this is impossible, so there is no x intercept.
H.A. : In class, we saw $\lim _{x \rightarrow \infty} \frac{e^{x}}{10 e^{x}-1}=\frac{1}{10}$ and above, we saw $\lim _{x \rightarrow-\infty} \frac{e^{x}}{10 e^{x}-1}=0$.

So the H.A.'s are $y=0$ and $y=\frac{1}{10}$.
V.A. : The graph has a vertical asymptote at x if $10 e^{x}=1$, that is if $e^{x}=\frac{1}{10}$ or $x=\ln \left(\frac{1}{10}\right)$.

Inc/Dec $\left(h^{\prime}(x)\right)$ To determine where the graph is increasing or decreasing, we calculate the derivative using the quotient rule

$$
h^{\prime}(x)=\frac{\left(10 e^{x}-1\right) e^{x}-e^{x}\left(10 e^{x}\right)}{\left(10 e^{x}-1\right)^{2}}=\frac{e^{x}\left(10 e^{x}-1-10 e^{x}\right)}{\left(10 e^{x}-1\right)^{2}}=\frac{-e^{x}}{\left(10 e^{x}-1\right)^{2}}
$$

Since $h^{\prime}(x)$ is always negative, the graph of $y=h(x)$ is always decreasing.
Concave/Convex To determine intervals of concavity and convexity, we calculate the second derivative.

$$
h^{\prime \prime}(x)=\frac{d}{d x} h^{\prime}(x)=\frac{d}{d x} \frac{-e^{x}}{\left(10 e^{x}-1\right)^{2}}=-\frac{d}{d x} \frac{e^{x}}{\left(10 e^{x}-1\right)^{2}} .
$$

I'm going to use logarithmic differentiation here

$$
y=\frac{e^{x}}{\left(10 e^{x}-1\right)^{2}} \rightarrow \ln (y)=\ln \left(e^{x}\right)-2 \ln \left(10 e^{x}-1\right)=x-2 \ln \left(10 e^{x}-1\right)
$$

differentiating both sides, we get

$$
\frac{1}{y} \frac{d y}{d x}=1-2 \cdot \frac{1}{10 e^{x}-1} \cdot 10 e^{x}=1-\frac{20 e^{x}}{10 e^{x}-1}
$$

Multiplying across by $y=\frac{e^{x}}{\left(10 e^{x}-1\right)^{2}}$, we get

$$
\frac{d y}{d x}=\frac{e^{x}}{\left(10 e^{x}-1\right)^{2}}-\frac{e^{x}}{\left(10 e^{x}-1\right)^{2}} \cdot \frac{20 e^{x}}{10 e^{x}-1} .
$$

$$
\begin{gathered}
=\frac{e^{x}\left(10 e^{x}-1\right)-e^{x}\left(20 e^{x}\right)}{\left(10 e^{x}-1\right)^{3}}=\frac{e^{x}\left(-1-10 e^{x}\right)}{\left(10 e^{x}-1\right)^{3}}=\frac{-e^{x}\left(1+10 e^{x}\right)}{\left(10 e^{x}-1\right)^{3}} \\
h^{\prime \prime}(x)=-\frac{d y}{d x}=\frac{e^{x}\left(1+10 e^{x}\right)}{\left(10 e^{x}-1\right)^{3}}
\end{gathered}
$$

We see that the numerator is always positive here. From our calculations above, we have $10 e^{x}-1<0$ if $x<\ln (1 / 10)$ and $10 e^{x}-1>0$ if $x>\ln (1 / 10)$.
Therefore $h^{\prime \prime}(x)<0$ if $x<\ln (1 / 10)$ and $h^{\prime \prime}(x)>0$ if $x>\ln (1 / 10)$ and
The graph of $y=h(x)$ is concave down if $x<\ln (1 / 10)$ and concave up if $x>\ln (1 / 10)$.
Putting all of this together, you should get a graph that looks like:

Check it and other functions out in Mthematica

Answers to Old Exam Questions

Old Exam Question The function $f(x)=x^{3}+3 x+e^{2 x}$ is one-to-one. Compute $f\left({ }^{-1}\right)^{\prime}(1)$.
We use the formula

$$
\begin{gathered}
\left(f^{-1}\right)^{\prime}(1)=\frac{1}{f^{\prime}\left(f^{-1}(1)\right)} \\
b=f^{-1}(1) \quad \text { same as } \quad f(b)=1 \quad \rightarrow \quad b^{3}+3 b+e^{2 b}=1
\end{gathered}
$$

Solving for b is very difficult, but we can work by trail and error. If we try $b=0$, we see that it works, since $e^{0}=1$. Therefore $f^{-1}(1)=0$.

We also need to calculate $f^{\prime}(x)$, we get $f^{\prime}(x)=3 x^{2}+3+2 e^{2 x}$.

$$
\left(f^{-1}\right)^{\prime}(1)=\frac{1}{f^{\prime}\left(f^{-1}(1)\right)}=\frac{1}{f^{\prime}(0)}=\frac{1}{3+2}=\frac{1}{5} .
$$

Old Exam Question Compute the limit

$$
\lim _{x \rightarrow \infty} \frac{e^{x}-e^{-x}}{e^{2 x}-e^{-2 x}} .
$$

We divide both numerator and denominator by the highest power of e^{x} in the denominator which is $e^{2 x}$ in this case.

$$
\lim _{x \rightarrow \infty} \frac{e^{x}-e^{-x}}{e^{2 x}-e^{-2 x}}=\lim _{x \rightarrow \infty} \frac{\left(e^{x}-e^{-x}\right) / e^{2 x}}{\left(e^{2 x}-e^{-2 x}\right) / e^{2 x}}=\lim _{x \rightarrow \infty} \frac{e^{-x}-e^{-3 x}}{1-e^{-4 x}}=\frac{0}{1}=0 .
$$

Old Exam Question Compute the Integral

$$
\int_{0}^{\ln 2} \frac{e^{x}}{1+e^{x}} d x
$$

We make the substitution $u=1+e^{x}$. We have

$$
d u=e^{x} d x, \quad u(0)=2, \quad u(\ln 2)=1+e^{\ln 2}=3
$$

We get

$$
\begin{gathered}
\int_{0}^{\ln 2} \frac{e^{x}}{1+e^{x}} d x=\int_{2}^{3} \frac{1}{u} d u=\left.\ln |u|\right|_{2} ^{3} \\
\quad=\ln |3|-\ln |2|=\ln (3 / 2)
\end{gathered}
$$

